Cytotoxic Triterpenoid Saponins of *Albizia gummifera* from the Madagascar Rain Forest^{∇ ,1}

Shugeng Cao,[†] Andrew Norris,[†] James S. Miller,[‡] Fidy Ratovoson,[§] Jeremi Razafitsalama,[§] Rabodo Andriantsiferana,[⊥] Vincent E. Rasamison,[⊥] Karen TenDyke,[∥] Ted Suh,[∥] and David G. I. Kingston*,[†]

Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, Missouri Botanical Garden, P. O. Box 299, St. Louis, Missouri 63166-029, and B. P. 3391, Antananarivo, Madagascar, Centre National d'Application des Recherches Pharmaceutiques, B. P. 702, Antananarivo 101, Madagascar, and Eisai Research Institute, 4 Corporate Drive, Andover, Massachusetts 01810

Received October 13, 2006

Bioassay-guided fractionation of an EtOH extract obtained from the roots of the Madagascan plant Albizia gummifera led to the isolation of three new cytotoxic oleanane-type triterpenoid saponins, gummiferaosides A-C (1-3). The structures of these new compounds were elucidated using 1D and 2D NMR experiments and mass spectrometry. Compounds 1-3 showed cytotoxicity against the A2780 human ovarian cancer cell line with IC₅₀ values of 0.8, 1.5, and 0.6 μ g/mL, respectively.

In our continuing search for bioactive molecules from the Madagascar rainforests as part of an International Cooperative Biodiversity Group (ICBG) program,¹ we obtained an extract of the roots of Albizia gummifera (J. F. Gmel.) C. A. Sm. var. gummifera (Fabaceae). This extract, designated MG 1012, showed reproducible cytotoxicity to the A2780 ovarian cancer cell line, with an IC₅₀ value of 7.2 μ g/mL. The extract was selected for bioassay-guided fractionation on the basis of this activity.

The genus Albizia comprises about 150 species widely distributed in the tropics, with the greatest diversity in Africa and South America.² Alkaloids,³ flavonoids,⁴ sterols,⁵ and triterpenoid saponins⁶⁻¹¹ have been isolated from Albizia species, and Albizia gummifera in particular has been studied for its alkaloids^{3a,c} and triterpenoids.^{5,9} It has been reported that alkaloids from Albizia adinocephala inhibit plasmepsin II, an aspartyl proteinase crucial to the survival of the malaria parasite.3c Albiziasaponin B from Albizia myriophylla was found to show a potent sweetness intensity relative to sucrose.^{6b} Some triterponoid saponins from Albizia species exhibited in vitro cytotoxicity against various cancer cell lines.2,6a,7,8

In this paper, we report the isolation, structure elucidation, and cytotoxicity of three new bioactive triterpenoid saponins (1-3)obtained from the roots of A. gummifera.

Results and Discussion

Liquid-liquid partitioning of a portion of an EtOH extract of the roots of A. gummifera into hexane, CH₂Cl₂, and aqueous MeOH fractions indicated that the aqueous MeOH fraction (1 g) was the most active fraction, with an IC₅₀ value of $< 6.25 \,\mu$ g/mL (the lowest concentration tested). Purification of the aqueous MeOH fraction using a C₁₈ open column, followed by preparative HPLC on a phenyl bonded column, and final purification by HPLC on an analytical size C_8 bonded column led to the isolation of compounds 1-3.

Compound 1 was obtained as a white solid. Its HRFABMS (positive-ion mode) exhibited a quasimolecular ion peak at m/z2177.9998, consistent with a molecular composition of C102H162O48-Na (calcd for $C_{102}H_{162}O_{48}Na^+$, 2178.0128).¹² The aglycon of 1

(fragment I) was identified as acacic acid by analysis of ¹H and ¹³C NMR spectra (Tables 1 and 2) and from observation of connectivities in the COSY, TOCSY, ROESY, HSOC, and HMBC NMR spectra. The NMR spectra indicated the presence of one trisubstituted double bond (12-position) and three oxygenated methines (3-, 16-, and 21-positions) in the oleanane-type aglycon of **1**. Out of the seven methyl groups in the aglycon, only H_3 -27 $(\delta_{\rm H} 1.42, s)$ exhibited a ³J HMBC correlation to C-13 ($\delta_{\rm C} 143.7$), which confirmed the location of the double bond. In the HMBC spectrum of **1**, H₃-23 ($\delta_{\rm H}$ 1.09, s) and H₃-24 ($\delta_{\rm H}$ 0.86, s) showed correlations to C-3 ($\delta_{\rm C}$ 90.3). The H₂-22 ($\delta_{\rm H}$ 1.67 and $\delta_{\rm H}$ 2.07) signals correlated to both C-16 ($\delta_{\rm C}$ 74.1) and C-21 ($\delta_{\rm C}$ 78.6), while H_2 -22, H_3 -29 (δ_H 0.85, s), and H_3 -30 (δ_H 1.03, s) exhibited ²J, ³J, and ³J HMBC correlations to C-21, respectively. ROESY correla-

⁷ Dedicated to the late Dr. Kenneth L. Rinehart of the University of Illinois at Urbana-Champaign for his pioneering work on bioactive natural products.

^{*} To whom correspondence should be addressed. Tel: (540) 231-6570. Fax: (540) 231-3255. E-mail: dkingston@vt.edu.

Virginia Polytechnic Institute and State University.

[‡] Missouri Botanical Garden, St. Louis.

[§] Missouri Botanical Garden, Antananarivo.

[⊥] Centre National d'Application des Recherches Pharmaceutiques. || Eisai Research Institute.

Table 1. ¹H NMR Data of Compounds $1-3^{a,b}$

position	1	2	3	position	1	2	3
1	1.62 m	1.62 m	1.62 m	MT'-4	2.30 m	2.30 m	2.30 m
2	1.85 m	1.85 m	1.85 m	-5	1.70 m	1.70 m	1.70 m
	1.70 m	1.70 m	1.70 m				
3	3.33 m	3.33 m	3.33 m	-7	5.93 dd (17.7,	5.92 dd (17.7,	5.92 dd (17.7,
					11.0)	11.0)	11.0)
5	0.78 br d (10.0)	0.78 m	0.78 m	-8	5.27 dd (17.7,	5.27 dd (17.7,	5.27 dd (17.7,
					1.2)	1.2)	1.2)
					5.20 dd (11.0,	5.20 dd (11.0,	5.21 m
					1.2)	1.2)	
6	1.50 m	1.50 m	1.52 m	-9	1.89 s	1.82 s	1.82 s
	1.28 m	1.28 m	1.38 m				
7	1.36 m	1.38 m	1.38 m	-10	1.38 s	1.38 s	1.38 s
9	1.68 m	1.66 m	1.66 m	MT''-3			6.73 t (7.3)
11	1.92 m	1.90 m	1.90 m	-4			2.30 m
12	5.34 br s	5.34 br s	5.35 br s	-5			1.70 m
15	1.50 m	1.45; 1.55	1.50 m	-7			5.73 dd (17.7,
							11.0)
16	4.45 dd (5.0, 5.0)	4.48 br s	4.48 br s	-8			5.21 m
							5,21 m
18	2.96 dd (10.5,	2.97 m	2.97 m	-9			1.79 s
	5.5)						
19	2.50 dd (12.0,	2.50 dd (14.0,	2.50 dd (14.0,	-10			1.33 s
	10.5)	14.0)	14.0)				
	1.18 dd (12, 5.5)	1.17 dd (13.1,	1.17 dd (13.1,				
		5.0)	5.0)				
21	5.43 dd (10.8,	5.44 dd (11, 5.5)	5.43 dd (11, 5.5)	Q-1	4.42 d (7.6)	4.41 d (7.8)	4.42 d (8.0)
	5.5)						
22	2.07 dd (12.0,	2.10 dd (13.8,	2.10 dd (13.8,	-6	1.10 d (6.1)	1.09 d (6.0)	1.09 d (6.2)
	5.5)	5.5)	5.5)				
	1.67 m	1.67 m	1.67 m				
23	1.09 s	1.09 s	1.09 s	Q'-1	4.35 d (7.6)	4.34 d (7.8)	4.54 d (8.0)
24	0.86 s	0.85 s	0.85 s	-6	1.23 d (6.1)	1.22 d (6.2)	1.23 d (6.2)
25	0.96 s	0.96 s	0.96 s	Q''-1			4.35 d (7.8)
26	0.75s	0.76s	0.76s	-6			1.26 d (6.2)
27	1.42 s	1.41 s	1.40 s	G-1	4.47 m	4.43 d (7.6)	4.43 d (7.6)
29	0.85 s	0.85 s	0.85 s	G'-1	4.66 d (7.8)	4.66 d (7.7)	4.66 d (7.8)
30	1.03 s	1.03 s	1.03 s	F-1	4.47 m	4.46 d (7.1)	4.32 d (7.1)
MT-3	6.75 t (7.3)	6.75 t (7.3)	6.75 t (7.3)	-6	1.26 d (6.4)	1.26 d (6.2)	1.26 d (6.2)
-4	2.30 m	2.30 m	2.30 m	X-1	4.47 m		
-5	1.70 m	1.70 m	1.70 m	A-1		4.55 d (6.4)	
-7	5.95 dd (17.7,	5.93 dd (17.7,	5.93 dd (17.7,	G''-1	5.32 d (7.8)	5.32 d (7.8)	5.32 d (7.8)
	11.0)	11.0)	11.0)				
-8	5.29 dd (17.7,	5.29 dd (17.7, 1.2)	5.29 dd (17.7,	R-1	5.41 d (1.4)	5.40 d (1.5)	5.40 d (1.5)
	0.8)		1.2)				
	5.21 dd (11.0,	5.21 dd (11.0, 1.2)	5.21 m				
	0.8)						
-9	1.83 s	1.82 s	1.84 s	-6	1.31 d (6.4)	1.30 d (6.2)	1.30 d (6.2)
-10	1.36 s	1.36 s	1.37 s	X'-1	4.47 m	4.50 d (7.7)	4.50 d (7.6)
MT'-3	6.80 t (7.3)	6.80 t (7.3)	6.83 t (7.3)				

^{*a*} δ (ppm) 500 MHz; multiplicities; *J* values (Hz) in parentheses. ^{*b*} In CD₃OD.

tions between H₃-23 and H-3 ($\delta_{\rm H}$ 3.33) and between H₃-25 ($\delta_{\rm H}$ 0.96, s) and H₃-24 revealed that H-3 has an α -axial orientation. In turn, H-16 ($\delta_{\rm H}$ 4.45, dd, J = 5.0 and 5.0 Hz) of **1** was assigned as a β -equatorial proton from its coupling constants. In corroboration of this assignment, H-16 α of the 16 β -oxygenated triterpenoid gymnemagenin is a doublet of doublets with coupling constants of 11.5 and 5.0 Hz, respectively.¹³ The orientation of H-21 ($\delta_{\rm H}$ 5.43, dd, J = 10.8 and 5.5 Hz) was determined as α -axial, which was confirmed by a ROESY correlation between H₃-29 and H-21. Further, the NMR data of fragment I of **1** were in full agreement with those reported in the literature for acacic acid, supporting an acacic acid aglycon.^{10,14}

Analysis of the ¹H NMR, ¹³C NMR, and HSQC spectra of **1** indicated the presence of nine sugar units and additional unsaturated ester units in three fragments designated II, III, and IV. 1D TOCSY spectra were initially obtained in CD₃OD to elucidate the structures of these fragments, but overlapping signals in the ¹H NMR spectrum prevented complete spectroscopic interpretation. The use of C_5D_5N containing three drops of CD₃OD as the NMR solvent was found to reduce the overlap problem, and the following discussion is based on

the NMR data collected in this mixed solvent system (see Experimental Section for ¹H NMR data, and Table 2 for ¹³C NMR data).

Protons H-21, H-MT-3 ($\delta_{\rm H}$ 6.87, t, J = 7.3 Hz), and H-MT-9 ($\delta_{\rm H}$ 1.88, s) of **1** all showed HMBC correlations to C-MT-1 ($\delta_{\rm C}$ 168.1) (Figure 1), indicating that C-21 is esterified. The HMBC correlations between H-MT-10 ($\delta_{\rm H}$ 1.54, s) and C-MT-5/C-MT-6/C-MT-7 ($\delta_{\rm C}$ 40.7/80.1/144.4) and the COSY correlations between H₂-MT-4 ($\delta_{\rm H}$ 2.40, m) and H-MT-3/H₂-MT-5 ($\delta_{\rm H}$ 6.87, t, J = 7.3 Hz/1.74, m) and between H-MT-7 ($\delta_{\rm H}$ 6.21, m) and H₂-MT-8 ($\delta_{\rm H}$ 5.44, br d, J = 15.8 Hz; $\delta_{\rm H}$ 5.27, br d, J = 11.0 Hz) indicated that the ester unit is a 6-*O*-2,6-dimethylocta-2,7-dienoyl monoterpenoid moiety.¹⁰ The trisubstituted double bond in the inner monoterpenyl unit was assigned the *E* configuration, as evidenced by a ROESY correlation between H₃-MT-9 and H₂-MT-4.

The H-Qui-1 proton ($\delta_{\rm H}$ 4.84, d, J = 8 Hz) showed a ³J HMBC correlation to C-MT-6 ($\delta_{\rm C}$ 80.1), establishing the connectivity from the 6-position of the inner monoterpenyl moiety to the anomeric position of the quinovopyranose unit. The spin system from the anomeric proton to the other protons of the inner quinovopyranose was clearly exhibited in a 1D TOCSY spectrum [H-Qui-1 (se-

Table 2. ¹³C NMR Data of Compounds $1-3^{a,b}$

	Data 0	i compounda	51 5						
carbon	1 ^c	1^d	2 ^c	3 ^c	carbon	1 ^c	1^d	2 ^c	3 ^c
1	39.9	39.9	40.2	40.1	O-1	99.3	99.6	99.5	99.4
2	27.4	27.1	27.6	27.4	-2	76.4	75.8	76.6	76.5
3	90.3	89.0	91.2	91.6	-3	76.4	75.8	76.4	76.7
4	40.6	40.3	40.7	40.6	-4	77.9	77.5	78.1	78.0
5	57.1	56.4	57.2	57.3	-5	70.9	70.5	71.1	71.3
6	18.3	18.7	18.5	18.5	-6	18.3	19.1	18.4	18.4
7	34.3	33.7	34.5	34.5	Q'-1	99.3	99.6	99.5	97.6
8	40.8	40.8	41.0	41.0	-2	75.5	75.7	75.8	76.1
9	48.0	47.4	48.3	48.0	-3	78.3	78.5	78.5	76.3
10	37.9	37.3	38.1	38.1	-4	77.3	77.0	77	78.1
11	24.6	24.0	24.8	24.7	-5	/2.6	/3.3	/3.3	/3.3
12	124.0	124.0	124.5	1/4.5	-0 O'' 1	16.2	19.1	16.4	18.4
13	42.6	42.3	42.8	42.8	-2				75.8
15	35.9	36.2	36.1	36.1	-3				78.5
16	74.1	73.8	74.3	74.3	-4				77.5
17	52.3	52.0	52.5	52.5	-5				73.0
18	41.5	41.3	41.8	41.9	-6				18.4
19	48.0	48.0	48.3	48.0	G-1	104.6	105.3	105.5	105.5
20	36.3	35.6	36.6	36.5	-2	81.2	83.2	81.2	81.3
21	78.6	77.4	78.8	78.7	-3	78.2	78.5	78.7	78.6
22	36.1	36.7	36.4	36.3	-4	71.8	71.8	72.0	72.0
23	28.4	28.5	28.6	28.7	-5	77.5	77.0	78.1	78.1
24	16.9	16.1	17.2	17.1	-6	69.8	70.2	69.4	69.0
25	16.2	17.2	16.4	16.3	G-1	105.2	106.3	104.7	105.3
26	17.6	17.5	17.9	17.8	-2	/6.2	/6.1	/5.9	/5.8
27	27.4	27.5	27.5	27.4	-3	71.9	77.3	77.5	77.1
20	29.4	29.5	29.6	29.5	-4	78.3	72.3	72.1	72.1
30	19.4	19.5	19.6	19.5	-6	63.1	62.8	63.4	63.3
MT-1	169.1	168.1	169.3	169.2	F-1	104.0	103.7	104.1	104.7
-2	129.1	128.9	129.3	129.2	-2	82.4	82.6	81.2	72.4
-3	144.0	142.5	144.2	144.1	-3	75.4	75.4	75.7	75.6
-4	24.4	23.9	24.7	24.5	-4	72.9	72.9	72.5	72.5
-5	41.0	40.7	41.2	41.3	-5	71.7	71.6	71.4	72.1
-6	81.0	80.1	81.3	81.2	-6	16.7	17.7	16.9	16.9
-7	144.1	144.4	144.3	144.2	X-1	107.1	107.3		
-8	115.9	115.4	116.2	116.1	-2	75.6	76.3		
-9	12.6	13.0	12.8	12.8	-3	77.8	78.1		
-10 MT/ 1	23.0	23.9	23.8	23.8	-4	/1.1	/1.0		
2	109.0	108.0	109.0	109.0	-5	07.5	07.0	106.1	
-2	120.4	128.5	128.0	144.2	_2			71.6	
-4	24.5	23.9	24.6	24.6	-3			73.1	
-5	41.0	40.7	41.2	41.3	-4			70.0	
-6	80.9	79.8	81.1	81.1	-5			66.3	
-7	144.7	144.4	144.9	144.8	G''-1	95.2	95.5	95.4	95.4
-8	115.9	115.2	116.1	116.1	-2	77.1	76.7	77.3	77.2
-9	12.6	13.0	12.8	12.8	-3	79.5	79.4	79.6	79.6
-10	23.6	24.0	23.8	23.8	-4	71.4	71.4	71.3	71.3
MT''-1				168.8	-5	79.5	79.4	79.8	79.6
-2				128.8	-6	62.2	62.1	62.4	62.3
-3				143.8	R-1	101.1	101.6	101.3	101.3
-4				24.5 41.2	-2	12.2	12.1	72.0	12.1
-3 -6				41.2 81.0	-3 _/	12.9	12.9	/ 3.U 84 2	13.2
-0				144 5	-4 _5	68 8	68 8	69 0	69 N
-8				116.5	-6	18.3	19.0	18.5	18.3
-9				12.8	X'-1	106.9	106.7	107.1	107.0
-10				24.2	-2	77.1	76.5	77	77.0
					-3	78.4	78.7	78.6	78.5
					-4	71.1	71.2	71.1	71.0
					-5	67.3	67.5	67.5	67.5

 $^{a}\delta$ (ppm) 125 MHz. b The signals of the sugar carbons were assigned by HSQC-TOCSY and 13 C NMR. c In CD₃OD. d In C₅D₅N with three drops of CD₃OD.

lected): $\delta_{\rm H}$ 4.84, d, J = 8.0 Hz; H-Qui-2: $\delta_{\rm H}$ 3.99, d, J = 8.0, 8.8 Hz; H-Qui-3: $\delta_{\rm H}$ 4.17, dd, J = 8.8, 8.8 Hz; H-Qui-4: $\delta_{\rm H}$ 5.32, dd, J = 8.8, 9.2 Hz; H-Qui-5: $\delta_{\rm H}$ 3.66, m; H-Qui-6: $\delta_{\rm H}$ 1.34, d, J =6.0 Hz] and the HSQC-TOCSY spectrum (correlations from H-Qui-1 to C-Qui-1–6: C-Qui-1, $\delta_{\rm C}$ 99.6; C-Qui-2, $\delta_{\rm C}$ 75.8; C-Qui-3, $\delta_{\rm C}$ 75.8; C-Qui-4, $\delta_{\rm C}$ 77.5; C-Qui-5, $\delta_{\rm C}$ 70.5; C-Qui-6, $\delta_{\rm C}$ 19.1) of **1**.

The outer monoterpenoid moiety (MT') and outer quinovopyranosyl unit (Q') of 1 were determined to be identical to the corresponding inner ones by the same methods. The HMBC correlations from H-Qui-4 to C-MT'-1, and H-Qui'-1 to C-MT'-6, established the connectivities from the 4-position of the inner quinovopyranose to the 1-position of the outer monoterpenyl moiety and from the 6-position of the outer monoterpenyl moiety to the anomeric position of the outer quinovopyranosyl unit. H-Qui-1 and H-Qui'-1 showed ROESY correlations to H-MT-10 and H-MT'-10, respectively. The ¹³C NMR chemical shifts of C-MT-5/C-MT'-5 and C-MT-10/C-MT'-10 of compound **1** were nearly identical to

Figure 1. Key HMBC (arrows) and ROESY (dashed) correlations for compound 1.

those of C-MT-5 ($\delta_{\rm C}$ 41.3) and C-MT-10 ($\delta_{\rm C}$ 23.8) of the related compound kinmoonoside B, which has the *S* configuration at the C-MT-6 and C-MT'-6 position.^{14a} In contrast, these chemical shifts were different from those of C-MT-5 ($\delta_{\rm C}$ 39.5) and C-MT-10 ($\delta_{\rm C}$ 24.5) of kinmoonoside A, which has the *R* configuration at the C-MT-6 and C-MT'-6 position.^{14a} These facts indicated that compound **1** has the *S* stereochemistry at the 6-positions of the monoterpenoid moieties.^{14a} These observations were used to establish the structure of fragment III.¹⁰

Starting from the anomeric and/or the sixth protons of each of the other seven sugar units, all the protons within each spin system of 1 were assigned using COSY NMR spectra with the aid of ROESY and 1D and 2D TOCSY spectra. The ¹³C NMR resonances of each of these seven sugar units were assigned by HSOC-TOCSY, HSQC, and HMBC spectra. One of the seven sugars was found to be a β -fucopyranosyl unit, as indicated by the presence of a methyl group at $\delta_{\rm H}$ 1.48 (H₃-F-6, d, J = 6.0 Hz). The coupling constants of H-Fuc-1 ($\delta_{\rm H}$ 4.94, d, J = 7.8 Hz), H-Fuc-2 ($\delta_{\rm H}$ 4.40, dd, J =7.8, 9.6 Hz), and H-Fuc-3 ($\delta_{\rm H}$ 4.11, dd, J = 4.0, 9.6 Hz) indicated axial positions for these three protons. The proton signal of H-Fuc-4 $(\delta_{\rm H} 4.00)$ was broad, indicating an α -equatorial orientation. An α -axial position for H-Fuc-5 ($\delta_{\rm H}$ 3.75, m) was required by the ROESY correlations between H-Fuc-1 and H-Fuc-3/H-Fuc-5. The carbon signal at $\delta_{\rm C}$ 82.6 assigned to C-Fuc-2 suggested that it was a glycosidic linkage site for another sugar.¹⁵ The second of the seven sugars was identified as an α -rhamnopyranosyl unit. The proton signals of both H-Rha-1 ($\delta_{\rm H}$ 6.36) and H-Rha-2 ($\delta_{\rm H}$ 4.78) had small coupling constants, suggesting that both were equatorial. The coupling patterns of H-Rha-3 ($\delta_{\rm H}$ 4.72, dd, J = 3.6, 8.8 Hz), H-Rha-4 ($\delta_{\rm H}$ 4.43, dd, J = 8.8, 9.2 Hz), H-Rha-5 ($\delta_{\rm H}$ 4.54, m), and H-Rha-6 ($\delta_{\rm H}$ 1.74, d, J = 6.5 Hz) indicated a rhamnopyranosyl unit. The downfield chemical shift of C-Rha-4 ($\delta_{\rm C}$ 83.4) indicated its connectivity to another anomeric position.16 Two of the seven sugars were identified as β -xylopyranosyl units, as evidenced by their proton and carbon chemical shifts [Xyl-1–5 ($\delta_{\rm H}\!/\delta_{\rm C}$): 5.03/ 107.3, 4.05/76.3, 4.05/78.1, 4.05/71.0, 3.58 and 4.45/67.6; Xyl'- $1-5 (\delta_{\rm H}/\delta_{\rm C})$: 5.25/106.7, 3.86-4.20/76.5, 3.86-4.20/78.7, 3.86-4.20/71.2, 3.47 and 4.23/67.5 (Experimental Section and Table 2)]. The ¹³C NMR chemical shifts of these two xylopyranosyl units were in good agreement with literature data.¹⁷ The final three sugars were found to be β -glucopyranosyl units. The unit at the 3-position of the aglycon was determined to be a β -glucopyranosyl moiety, the chemical shifts [C-Glc-1-6 ($\delta_{\rm H}/\delta_{\rm C}$): 4.87, d, J = 7.6 Hz/105.3; 4.00, dd, J = 7.6, 9.0 Hz/83.2; 4.12, dd, J = 9.0, 9.0 Hz/78.5;

4.50/71.8; 4.25/77.0; 4.40 and 4.60/70.2] of which were assigned by 1D and 2D NMR spectra (Experimental Section and Table 2). The axial orientations of H-Glc-3 and H-Glc-5 were determined by the observation of ROESY correlations between H-Glc-1 and H-Glc-3/H-Glc-5. The significant downfield signals for C-Glc-2 and C-Glc-6 indicated that they attached to two other sugars.¹⁸ The coupling patterns of H-Glc'-1 ($\delta_{\rm H}$ 5.35, d, J = 7.6 Hz) and H-Glc'-2 $(\delta_{\rm H} 4.08, dd, J = 7.6, 8.4 \text{ Hz})$ and the ROESY correlations between H-Glc'-1 and H-Glc'-3/H-Glc'-5 ($\delta_{\rm H}$ 4.19/3.90, br d, J = 8.4 Hz) indicated a β -glucopyranosyl unit, which was supported by a set of typical carbon chemical shifts for this unit [C-Glc'-1-6 ($\delta_{\rm C}$): 106.3, 76.1, 77.5, 72.3, 78.5, 62.8 (Table 2)].^{17.} Similar to the previously described β -glucopyranosyl units, the chemical shifts of a third β -glucopyranosyl unit [Glc"-1-6 ($\delta_{\rm H}/\delta_{\rm C}$): 6.11/95.5, 4.23/76.7, 4.23 or 3.96/79.4, 4.23 or 3.96/71.4, 4.23 or 3.96/79.4, 4.23/62.1 (Experimental Section and Table 2)] matched literature values, especially the ¹³C NMR chemical shifts.¹⁹

The connectivities of these seven glycosidic units in fragments II and IV were determined by analysis of HMBC and ROESY experiments (Figure 1). The anomeric proton of Glc-1 showed ROESY and HMBC correlations to H-3 and C-3, indicating a linkage of this β -glucopyranosyl unit to the 3-position of the aglycon. H-Glc'-1 correlated to C-Glc-2 in the HMBC spectrum, and H-Xyl-1 and H-Fuc-1 showed an HMBC and a ROESY correlation to C-Fuc-2 and H-Glc-6, respectively. The structure of fragment II was thus assigned as shown.¹⁰

Both H-18 and H-Glc"-1 exhibited ³*J* HMBC correlations to C-28 ($\delta_{\rm C}$ 175.0), suggesting that position-28 is esterified. The intergly-cosidic correlations of Glc", Xyl', and Rha were evident from the ROESY [H-Rha-1 to H-Glc"-2] and HMBC [H-Xyl'-1 to C-Rha-4] cross-peaks. Hence, fragment IV²⁰ and thus the final structure of **1** were determined as shown.

Compound **1** is structurally related to similar complex saponins with monoterpenoid esters at C-21 such as the julibrosides from *Albizia julibrissin*. Three close analogues are julibrosides I, II, and J_{14} ,^{7,10} which differ from **1** in the nature and position of some of the sugar units. Similar compounds were also isolated from other genera of the legume family, for example the avicins from *Acacia victoriae* Benth.^{13,14} and the elliptosides from *Archidendron ellipticum* (Blume) I. C. Nielsen,²¹ all of which share the same acacic acid aglycon with monoterpenoid glycosides at the 21-position and oligosaccharides at the 3- and 28-positions.

Compound 2 was obtained as a white solid. Comparison of the NMR data (Tables 1 and 2) of 1 and 2 in CD_3OD indicated that

the xylopyranosyl unit at the 2-position of the fucopyranosyl unit in fragment II of **1** was replaced by an arabinopyranosyl residue in **2**, while fragments I, III, and IV of **2** were the same as those of **1**. The arabinopyranosyl residue was attached to the 2-position of the fucopyranosyl unit, as deduced from an HMBC correlation between H-Ara-1 ($\delta_{\rm H}$ 4.55) and C-Fuc-2 ($\delta_{\rm C}$ 81.2), and the ¹³C NMR chemical shifts of the arabinopyranosyl residue [C-Ara-1-6 ($\delta_{\rm C}$): 106.1, 71.6, 73.1, 70.0, 66.3 (Tables 1 and 2)] were in good agreement with the literature data,¹¹ suggesting that fragment II of **2** is A¹-²F¹-⁶G(^{1,3}aglycon)²-¹G'. Therefore, the structure of **2** was determined as shown.

Compound 3 was also isolated as a white solid, and its aglycon was shown to be the same as that of 1 by comparison of NMR spectra. The major difference between compounds 1 and 3 was the presence of an extra monoterpenoid moiety in 3, as was evidenced by its mass spectrum and the HSQC spectrum. There were nine sugar units assigned in 3, including three quinovopyranoses, three glucopyranoses, one rhamnopyranose, one fucopyranose, and one xylopyranose. Fragments I and IV of 3 were the same as those of 1, as indicated by a comparison of their NMR spectra. There were only three sugars in fragment II [F¹-⁶G(¹-³agly $con)^{2}$ -1G']¹⁷ of **3** (Tables 1 and 2), as opposed to four in **1**, but these three were the same as three of the four sugars in 1, and so this unit was identified by a comparison of NMR spectra. Protons H-Q'-4 and H-Q"-1 showed HMBC correlations to the carbons C-MT"-1 and C-MT"-6, respectively, of the additional monoterpenoid unit, indicating that fragment III is (aglycon)-1MT6-1Q4-1-MT'6-1Q'4-1MT"6-1Q". The connectivities of these units were determined by the same methodology used in the structure elucidation of 1. The structure of 3 was thus determined as shown.

Some acacic acid-type saponins have been evaluated for their cytotoxicity. It was reported that the monoterpene-quinovopyranosyl moiety at C-21 and the oligosaccharide ester at C-28 of the acacic acid-type aglycon are crucial substituents required for the cytotoxicity of julibroside III and prosapogenins 8-10 against KB cells, and their hydroxyl group at C-16 may also be important for the cytotoxicity.6ª Neither monodesmonoterpenyl elliptoside A nor any of the anatoliosides A-E (monoterpene glycosides) produced distinctive cytotoxicity in the NCI 60-cell line screen, which supported the apparent requirement for both the terminal monoterpenoid unit and the acacic acid portion of such active molecules.^{14,21} It was reported that the trisaccharide unit at C-3 of kinmoonosides A-C was not crucial for their cytotoxicity,^{14a} but oligosaccharides at 3-positions may intensify the cytotoxicity of acacic acid derivatives. The apoptotic properties of avicins from Acacia victoriae have been studied by Gutterman et al.²² The same group also reported the thioesterification of avicins by a thioester linkage between Cys-199 of OxyR and the outer monoterpene side chain; such derivatization can induce an adaptive response that protects cells against oxidative or nitrosative stress.²³

Compounds 1-3 were evaluated in an antiproliferative assay using the A2780 human ovarian cancer cell line, and compounds 1 and 3 were also evaluated in a panel of four additional cell lines: MDA-MB-435 breast cancer, HT-29 colon cancer, H522-T1 nonsmall-cell lung cancer, and U937 histiocytic lymphoma. The data are shown in Table 3. All three compounds had significant antiproliferative effects on the A2780 cell line, and compounds 1 and 3 also had strong effects on the MDA-MB-435 and U937 cell lines. Compound 3 alone showed strong activity against HT-29 and H522-T1 cells. Compounds 1-3 possess structural features essential for cytotoxicity, similar to the cytotoxic julibrosides, prosapogenins, elliptoside, and avicins, mentioned above.

Experimental Section

General Experimental Procedures. Optical rotations were recorded on a Perkin-Elmer 241 polarimeter. IR and UV spectra were measured on MIDAC M-series FTIR and Shimadzu UV-1201 spectrophotometers, respectively. NMR spectra were obtained on a JEOL Eclipse 500 for

Table 3. Antiproliferative Activities of Compounds 1-3

	A2780	MDA-MB-435	HT-29	H522-T1	U937
	IC ₅₀				
	(µM) ^a	(µM) ^b	(µM) ^b	(µM) ^b	(µM) ^b
1	0.37	0.84	6.61	>10	0.19
2	0.70	ND	ND	ND	ND
3	0.26	0.48	0.61	0.64	0.29

^{*a*} Concentration of compound that inhibited cell growth by 50% compared to untreated cell populations, with actinomycin D as the positive control. Data are the mean of three determinations. ^{*b*} Concentration of compound that inhibited cell growth by 50% compared to untreated cell populations, with vinblastine as the positive control. Data are the mean of two determinations.

¹H, ¹³C, HMQC, and HMBC and an INOVA 400 spectrometer for TOCSY, COSY, ROESY, and HSQC-TOCSY. Chemical shifts are given in δ (ppm), and coupling constants are reported in Hz. Mass spectra were obtained on a JEOL JMS-HX-110 instrument, in the positive-ion mode. HPLC was performed on a Shimadzu LC-10AT instrument with a semipreparative C₈ Varian Dynamax column (5 μ m, 250 \times 10 mm) and a preparative phenyl Varian Dynamax column (8 μ m, 250 \times 21.4 mm).

Cell Growth Inhibition Assays. Antiproliferative effects of compounds on the A2780 ovarian cancer cell line were performed at Virginia Polytechnic Institute and State University as described previously. The A2780 cell line is a drug-sensitive human ovarian cancer cell line.²⁴ Antiproliferative effects of compounds on the four cultured human cancer cell lines MDA-MB-435 breast cancer, HT-29 colon cancer, H522-T1 non-small-cell lung cancer, and U937 histiocytic lymphoma were performed as follows. The cells were placed into 96well plates and grown in the absence or continuous presence of 0.3-10 000 nM compounds for 96 h. Cell growth was assessed using the CellTiter-Glo luminescent cell viability assay (Promega) according to the manufacturer's recommendations. Luminescence was read on a Victor²V 1420 MultiLabel HTS counter (Perkin-Elmer/Wallac). IC₅₀ values were determined as the concentration of a compound that inhibits cell growth by 50% compared to untreated cell populations. Two separate replicate experiments were performed.

Plant Material. Roots of *Albizia gummifera* (J.F. Gmel.) C.A. Sm. var. *gummifera* (Fabaceae) were collected in November 2001 as collection RFA 579. The collection was made by Fidy Ratovoson et al., 3 km northwest of the village of Nosivola. The plant was growing in a dense humid forest adjacent to Zahamena National Park, in Toamasina Province, Madagascar (17°41.01' S; 48°38.28' E, elevation 900 m). The specimen accessed was a small tree 9 m in height and trunk diameter 14 cm, with pale green sepals, white petals, and 10 dark red stamens. The vernacular name of this species in this area is *"volomborona*". Duplicate voucher specimens were deposited at Centre National d'Application des Recherches Pharmaceutiques (CNARP) and the Departement des Recherches Forestieres et Piscicoles Herbarium in Antananarivo, Madagascar (TEF), at Missouri Botanical Garden, St. Louis, Missouri (MO), and the Museum National d'Histoire Naturelle in Paris, France (P).

Extraction and Isolation. Dried roots of A. gummifera (430.9 g) were ground in a hammer mill, then extracted with EtOH by percolation for 24 h at rt to give the crude extract MG 1012 (10.14 g), of which 7.44 g was shipped to Virginia Polytechnic Institute and State University (VPISU) in triplicate vials for distribution to Eisai Research Institute (2.79 g), Dow AgroSciences (2.19 g), and VPISU (2.46 g). Extract MG 1012 (1.49 g, IC₅₀ 7.2 μ g/mL) was suspended in aqueous MeOH (MeOH-H₂O, 9:1, 100 mL) and extracted with hexanes (3 \times 100 mL portions). The aqueous layer was then diluted to 70% MeOH with H₂O and extracted with CH_2Cl_2 (3 \times 100 mL portions). The aqueous MeOH extract (1 g) was active with an IC₅₀ less than 6.25 μ g/mL, while both the hexane and CH_2Cl_2 extracts were inactive. The aqueous MeOH fraction was chromatographed on an open C_{18} column (130 \times 22 mm) using H_2O -MeCN (80:20 to 40:60, then 0:100) to yield the three fractions A [296 mg (polar, inactive)], B [516 mg, IC₅₀ less than 6.25 µg/mL], and C [73 mg, nonpolar, inactive]. Fraction B furnished 15 subfractions after HPLC separation on a phenyl-bonded column (35% MeOH-H₂O, 10 mL/min). HPLC of subfraction 4 (28 mg) on a C₈ bonded phase column eluted with 70% MeOH-H₂O (2 mL/min) yielded compounds 1 (t_R 30 min, 6 mg) and 2 (t_R 34 min, 3 mg). Compound 3 (t_R 37 min, 3 mg) was obtained by HPLC of subfraction 14 (18 mg) also using C₈ HPLC (72% MeOH $-H_2O$, 2 mL/min).

Gummiferaoside A (1): white solid; $[\alpha]^{26}_{D} - 15$ (*c* 0.37, MeOH); UV (MeOH) λ_{max} (log ϵ) 218 (4.6) nm; IR (film) ν_{max} 3339, 2945, 2833, 1744, 1730, 1432, 1364, 1343, 1304, 1253, 1200, 1153, 1076, 1009, 1025 cm⁻¹; ¹H NMR (500 MHz, CD₃OD), see Table 1; ¹³C NMR (125 MHz, CD₃OD and C₅D₅N with three drops of CD₃OD), see Table 2; ¹H NMR (500 MHz, C₅D₅N with three drops of CD₃OD) 7.02 (1H, t, J = 7.5 Hz, H-MT'-3), 6.87 (1H, t, J = 7.3 Hz, H-MT-3), 6.36 (1H, br s, H-R-1), 6.21 (1H, m, H-MT-7), 6.21 (1H, m, H-MT'-7), 6.18 (1H, m, H-21), 6.11 (1H, d, *J* = 7.6 Hz, H-G"-1), 5.70 (1H, br s, H-12), 5.44 (1H, br d, J = 15.8 Hz, H-MT-8a), 5.44 (1H, br d, J = 15.8 Hz, H-MT'-8a), 5.35 (1H, d, J = 7.6 Hz, H-G'-1), 5.32 (1H, dd, J = 8.8, 9.2 Hz, H-Q-4), 5.30 (1H, m, H-16), 5.27 (1H, br d, J = 11.0 Hz, H-MT-8b), 5.27 (1H, br d, J = 11.0 Hz, H-MT'-8b), 5.25 (1H, d, J = 7.0 Hz, H-X'-1), 5.03 (1H, d, J = 6.4 Hz, H-X-1), 4.94 (1H, d, J =7.8 Hz, H-F-1), 4.87 (1H, d, J = 7.6 Hz, H-G-1), 4.84 (1H, d, J = 8.0 Hz, H-Q-1), 4.84 (1H, d, J = 8 Hz, H-Q'-1), 4.78 (1H, br s, H-R-2), 4.72 (1H, dd, J = 3.6, 8.8 Hz, H-R-3), 4.60 (1H, m, H-G-6b), 4.54 (1H, m, H-R-5), 4.50 (1H, m, H-G-4), 4.45 (1H, dd, *J* = 4.0, 11.4 Hz, H-X-5b), 4.43 (1H, dd, J = 8.8, 9.2 Hz, H-R-4), 4.40 (1H, dd, J =7.8, 9.6 Hz, H-F-2), 4.40 (1H, m, H-G-6a), 4.29 (1H, m, H-G'-6b), 4.25 (1H, m, H-G-5), 4.23 (1H, m, H-X'-5b), 4.23 (1H, m, H-G"-2), 4.23 or 3.96 (2H, m, H₂-G"-6), 4.23 or 3.96 (1H, m, H-G"-3), 4.23 or 3.96 (1H, m, H-G"-4) 4.23 or 3.96 (1H, m, H-G"-5), 4.22 (1H, m, H-G'-6a), 4.20-3.86 (1H, m, H-X'-2), 4.20-3.86 (1H, m, H-X'-3), 4.20-3.86 (1H, m, H-X'-4), 4.19 (1H, m, H-G'-3), 4.19 (1H, m, H-G'-4), 4.17 (1H, dd, J = 8.8, 8.8 Hz, H-Q-3), 4.12 (1H, dd, J = 9.0, 9.0 Hz, H-G-3), 4.11 (1H, dd, J = 4.0, 9.6 Hz, H-F-3), 4.08 (1H, dd, J = 7.6, 8.4 Hz, H-G'-2), 4.07 (1H, m, H-Q'-3), 4.07 (1H, m, H-Q'-4), 4.05 (1H, m, H-X-2), 4.05 (1H, m, H-X-3), 4.05 (1H, m, H-X-4), 4.00 (1H, dd, J = 7.6, 9.0 Hz, H-G-2), 4.00 (1H, br s, H-F-4), 3.99 (1H, dd, J = 8.0, 8.8 Hz, H-Q-2), 3.95 (1H, dd, J = 8.0, 8.8 Hz, H-Q'-2), 3.90 (1H, br d, J = 8.4 Hz, H-G'-5), 3.75 (1H, m, H-F-5), 3.66 (1H, m, H-Q-5), 3.66 (1H, m, H-Q'-5), 3.58 (1H, dd, J = 10.0, 11.4 Hz, H-X-5a), 3.47 (1H, dd, J = 9.6, 11.2 Hz, H-X'-5a), 3.45 (1H, m, H-3), 3.45 (1H, m, H-18), 2.91 (1H, dd, J = 14.0, 13.1 Hz, H-19a), 2.82 (1H, dd, J = 14.0, 13.1 Hz, H-19a), 2.82 (1H, dd, J = 14.0, 13.1 Hz, H-19a), 2.82 (1H, dd, J = 14.0, 13.1 Hz, H-19a), 2.82 (1H, dd, J = 14.0, 13.1 Hz, H-19a), 2.82 (1H, dd, J = 14.0, 13.1 Hz, H-19a), 2.82 (1H, dd, J = 14.0, 13.1 Hz, H-19a), 2.82 (1H, dd, J = 14.0, 13.1 Hz, H-19a), 2.82 (1H, dd, J = 14.0, 13.1 Hz, H-19a), 2.82 (1H, dd, J = 14.0, 13.1 Hz, H-19a), 2.82 (1H, dd, J = 14.0, 13.1 Hz, H-19a), 2.82 (1H, dd, J = 14.0, 13.1 Hz, H-19a), 3.82 (1H, dd, J = 14.0, 13.1 Hz, H-19a), 3.82 (1H, dd, J = 14.0, 13.1 Hz, H-19a), 3.82 (1H, dd, J = 14.0, 13.1 Hz, H-19a), 3.82 (1H, dd, J = 14.0, 13.1 Hz, H-19a), 3.82 (1H, dd, J = 14.0, 13.1 Hz, H-19a), 3.82 (1H, dd, J = 14.0, 13.1 Hz, H-19a), 3.82 (1H, dd, J = 14.0, 13.1 Hz, H-19a), 3.82 (1H, dd, J = 14.0, 13.1 Hz, H-19a), 3.82 (1H, dd, J = 14.0, 13.1 Hz, H-19a), 3.82 (1H, dd, J = 14.0, 13.1 Hz, H-19a), 3.82 (1H, dd, J = 14.0, 13.1 Hz, H-19a), 3.82 (1H, dd, J = 14.0, 13.1 Hz)J = 14.2, 3.9 Hz, H-22a), 2.40 (2H, m, H₂-MT-4), 2.40 (2H, m, H₂-MT'-4), 2.26 (1H, m, H-2a), 2.20 (1H, m, H-22b), 2.07 (1H, m, H-11a), 2.04 (2H, m, H₂-15), 1.91 (1H, m, H-2b), 1.88 (3H, s, H₃-MT-9), 1.86 (1H, m, H-9), 1.82 (3H, s, H₃-MT'-9), 1.80 (3H, s, H₃-27), 1.74 (2H, m, H₂-MT-5), 1.74 (2H, m, H₂-MT'-5), 1.74 (3H, d, J = 6.5 Hz, H₃-R-6), 1.63 (1H, m, H-1), 1.61 (1H, m, H-11b), 1.60 (1H, m, H-6a), 1.58 (2H, m, H₂-7), 1.57 (1H, d, J = 6.0 Hz, H₃-Q'-6), 1.54 (3H, s, H_3 -MT-10), 1.54 (3H, s, H_3 -MT'-10), 1.48 (3H, d J = 6.0 Hz, H-F-6), 1.41 (1H, m, H-19b), 1.34 (1H, d, J = 6 Hz, H₃-Q-6), 1.30 (1H, m, H-6b), 1.28 (3H, s, H₃-23), 1.09 (3H, s, H₃-24), 1.07 (3H, s, H₃-30), 1.05 (3H, s, H₃-25), 0.98 (3H, s, H₃-29), 0.88 (3H, s, H₃-26), 0.85 (1H, br d, J = 10.0 Hz, H-5); HRFABMS m/z 2177.9998 (calcd for C₁₀₂H₁₆₂O₄₈Na, 2178.0128).

Gummiferaoside B (2): white solid; $[\alpha]^{26}_{D} - 11$ (*c* 0.18, MeOH); UV (MeOH) λ_{max} (log ϵ) 218 (4.6) nm; IR (film) ν_{max} 3344, 2931, 1678, 1439, 1360, 1309, 1280, 1246, 1201, 1181, 1134, 1063, 998 cm⁻¹; ¹H NMR (500 MHz, CD₃OD) and ¹³C NMR (125 MHz, CD₃OD), see Tables 1 and 2; HRFABMS *m/z* 2178.0071 (calcd for C₁₀₂H₁₆₂O₄₈Na, 2178.0128).

Gummiferaoside C (3): white solid; $[\alpha]^{26}_{D} - 24$ (*c* 0.28, MeOH); UV (MeOH) λ_{max} (log ϵ) 218 (4.7) nm; IR (film) ν_{max} 3328, 2943, 2833, 1745, 1732, 1598, 1431, 1364, 1342, 1304, 1252, 1195, 1152, 1067, 1022, 1007 cm⁻¹; ¹H NMR (500 MHz, CD₃OD) and ¹³C NMR (125 MHz, CD₃OD), see Tables 1 and 2; HRFABMS *m*/*z* 2358.1262 (calcd for C₁₁₃H₁₇₈O₅₀Na, 2358.1278).

Acknowledgment. This International Cooperative Biodiversity Group project was supported by the Fogarty International Center, the National Cancer Institute, the National Science Foundation, the National Heart, Lung and Blood Institute, the National Institute of Mental Health, the Office of Dietary Supplements, and the Office of the Director of NIH, under Cooperative Agreement U01 TW000313 from the National Institutes of Health, and this support is gratefully acknowledged. We thank Mr. B. Bebout for obtaining the mass spectra and Mr. T. Glass for assistance with the NMR spectra. Field work essential for this project was conducted under a collaborative agreement between the Missouri Botanical Garden and the Parc Botanique et Zoologique de Tsimbazaza and a multilateral agreement between the ICBG partners, including the Centre National d'Applications des Recherches Pharmaceutiques. We gratefully acknowledge courtesies extended by the Government of Madagascar (Ministère des Eaux et Forêts).

Supporting Information Available: This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- Biodiversity Conservation and Drug Discovery in Madagascar, Part 24. For Part 23, see: Williams, R. B.; Norris, A.; Miller, J. S.; Birkinshaw, C.; Ratovoson, F.; Andriantsiferana, R.; Rasamison, V. E.; Kingston, D. G. I. *J. Nat. Prod.* **2007**, in press (np0605034).
- (2) Abdel-Kader, M.; Hoch, J.; Berger, J. M.; Evans, R.; Miller, J. S.; Wisse, J. H.; Mamber, S. W.; Dalton, J. M.; Kingston, D. G. I. J. Nat. Prod. 2001, 64, 536-539.
- (3) (a) Rukunga, G. M.; Waterman, P. G. J. Nat. Prod. 1996, 59, 850–853. (b) Rukunga, G. M.; Waterman, P. G. Phytochemistry 1996, 42, 1211–1215. (c) Ovenden, S. P. B.; Cao, S. G.; Leong, C.; Flotow, H.; Gupta, M. P.; Buss, A. D.; Butler, M. S. Phytochemistry 2002, 60, 175–177.
- (4) Rao, Y. K.; Reddy, M. V. B.; Rao, C. V.; Gunasekar, D.; Blond, A.; Caux, C.; Bodo, B. *Chem. Pharm. Bull.* **2002**, *50*, 1271–1272.
- (5) Debella, A.; Haslinger, E.; Schmid, M. G.; Bucar, F.; Michl, G.; Abebe, D.; Kunert, O. *Phytochemistry* **2000**, *53*, 885–892.
- (6) (a) Ikeda, T.; Fujiwara, S.; Araki, K.; Kinjo, J.; Nohara, T.; Miyoshi, T. J. Nat. Prod. 1997, 60, 102–107. (b) Yoshikawa, M.; Morikawa, T.; Nakano, K.; Pongpiriyadacha, Y.; Murakami, T.; Matsuda, H. J. Nat. Prod. 2002, 65, 1638–1642. (c) Haddad, M.; Miyamoto, T.; Laurens, V.; Lacaille-Dubois, M.-A. J. Nat. Prod. 2003, 66, 372–377. (d) Krief, S.; Thoison, O.; Sevenet, T.; Wrangham, R. W.; Lavaud, C. J. Nat. Prod. 2005, 68, 897–903.
- (7) (a) Haddad, M.; Laurens, V.; Lacaille-Dubois, M.-A. *Bioorg. Med. Chem.* 2004, *12*, 4725–4734. (b) Liang, H.; Tong, W.-Y.; Zhao, Y.-Y.; Cui, J.-R.; Tu, G.-Z. *Bioorg. Med. Chem. Lett.* 2005, *15*, 4493–4495.
- (8) (a) Zou, K.; Zhao, Y.; Tu, G.; Cui, J.; Jia, Z.; Zhang, R. Carbohydr. Res. 2000, 324, 182–188. (b) Zou, K.; Tong, W. Y.; Liang, H.; Cui, J. R.; Tu, G. Z.; Zhao, Y. Y.; Zhang, R. Y. Carbohydr. Res. 2005, 340, 1329–1334.
- (9) Rukunga, G. M.; Waterman, P. G. Fitoterapia 2001, 72, 140-145.
- (10) Ikeda, T.; Fujiwara, S.; Kinjo, J.; Nohara, T.; Ida, Y.; Shoji, J.; Shingu, T.; Isobe, R.; Kajimoto, T. Bull. Chem. Soc. Jpn. 1995, 68, 3483– 3490.
- (11) Haddad, M.; Miyamoto, T.; Lacaille-Dubois, M.-A. *Helv. Chim. Acta* **2004**, *87*, 1228–1238.
- (12) The calculator function within ChemDraw was used for this calculation.
- (13) Qiu, S. X.; Gong, Y.; Cheung, H. T. A. *Phytochemistry* **1993**, *34*, 1385–1387.
- (14) (a) Tezuka, Y.; Honda, K.; Banskota, A. H.; Thet, M. M.; Kadota, S. *J. Nat. Prod.* **2000**, *63*, 1658–1664. (b) Jayatilake, G. S.; Freeberg, D. R.; Liu, Z.; Richheimer, S. L.; Blake, M. E.; Bailey, D. T.; Haridas, V.; Gutterman, J. U. *J. Nat. Prod.* **2003**, *66*, 779–783.
- (15) Cao, S. G.; Guza, R. C.; Wisse, J. H.; Miller, J. S.; Evans, R.; Kingston, D. G. I. J. Nat. Prod. 2005, 68, 487–492.
- (16) Kirmizibekmez, H.; Calis, I.; Piacente, S.; Pizza, C. *Helv. Chim. Acta* **2004**, *87*, 1172–1179.
- (17) Kalinowski, H.-O.; Berger, S.; Braun, S. Carbon-13 NMR Spectroscopy; John Wiley & Sons: Chichester, UK, 1988; p 441.
- (18) Yin, F.; Hu, L.; Lou, F.; Pan, R. J. Nat. Prod. 2004, 67, 942–952.
- (19) Mimaki, Y.; Harada, H.; Sakuma, C.; Haraguchi, M.; Yui, S.; Kudo, T.; Yamazaki, M.; Sashida, Y. *Helv. Chim. Acta* **2004**, *87*, 851– 865.
- (20) Li, T. Z.; Zhang, W. D.; Yang, G. J.; Liu, W. Y.; Chen, H. S.; Shen, Y. H. J. Nat. Prod. 2006, 69, 591–594.
 (21) Beutler, J. A.; Kashman, Y.; Pannell, L. K.; Cardellina, J. H., II;
- (21) Beutler, J. A.; Kashman, Y.; Pannell, L. K.; Cardellina, J. H., II; Alexander, M. R. A.; Balaschak, M. S.; Prather, T. R.; Shoemaker, R. H.; Boyd, M. R. *Bioorg. Med. Chem.* **1997**, *5*, 1509–1517.
- (22) Haridas, V.; Higuchi, M.; Jayatilake, G. S.; Bailey, D.; Mujoo, K.; Blake, M. E.; Arntzen, C. J.; Gutterman, J. U. *Proc. Natl. Acad. Sci.* U.S.A. 2001, 98, 5821–5826.
- (23) Haridas, V.; Kim, S.-O.; Nishimura, G.; Hausladen, A.; Stamler, J. S.; Gutterman, J. U. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10088– 10093.
- (24) Louie, K. G.; Behrens, B. C.; Kinsella, T. J.; Hamilton, T. C.; Grotzinger, K. R.; McKoy, W. M.; Winker, M. A.; Ozols, R. F. *Cancer Res.* **1985**, *45*, 2110–2115.

NP060506G